Shrinkage Clustering: a fast and size-constrained clustering algorithm for biomedical applications
نویسندگان
چکیده
منابع مشابه
Shrinkage Clustering: A Fast and Size-Constrained Algorithm for Biomedical Applications
Motivation: Many common clustering algorithms require a two-step process that limits their efficiency. The algorithms need to be performed repetitively and need to be implemented together with a model selection criterion, in order to determine both the number of clusters present in the data and the corresponding cluster memberships. As biomedical datasets increase in size and prevalence, there ...
متن کاملRepeated Record Ordering for Constrained Size Clustering
One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology, and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggreg...
متن کاملA fast algorithm for robust constrained clustering
The application of “concentration” steps is the main principle behind Forgy’s kmeans algorithm and Rousseeuw and van Driessen’s fast-MCD algorithm. Although they share this principle, it is not completely straightforward to combine both algorithms for developing a clustering method which is not affected by a certain proportion of outlying observations and that is able to cope with non spherical...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2018
ISSN: 1471-2105
DOI: 10.1186/s12859-018-2022-8